Object Oriented Concepts

Object Basics

class ohjects

r'-
J |
L al
Iy
| |
| >
¢
v |
I_1

Properties

Make

Model

Color

Year

Price

Start

Drive

Park

For Reference Purpose only

On_Start

On_Parked

On_Brake

/ Attributes
Name y
[i Name

Attributes % Behaviors
{ Attributes
Behaviors /
Behaviors
\ messages
Name |~ Name
Attributes Attributes
Behaviors Behaviors

An object-oriented program consists of many well-encapsulated
objects and interacting with each other by sending messages

For Reference Purpose only

Object

* In object-oriented programming (OOP), objects are
the units of code that are eventually derived from

the process.
* Each object is an instance of a particular class.

* They have,

— Properties or attributes
* Describe the state of an object

— Methods or procedures
e Define its behavior

An Object-Oriented Philosophy
* Traditional development methodology

— Algorithm-centric methodology
* Think algorithm, then build data structures

— Data-centric methodology
* Think how to structure data, then build algorithm

* Object-oriented programming

— Allows the basic concepts of the language to be extended
to include ideas and terms closer to those of its
applications.

— The algorithm and data are packaged together as an
object, which has a set of attributes or properties.

Objects

* The term Object means a combination of data

and logic that represents some real world
entity.

* In an object-oriented system, everything is
an object.

Objects are grouped in Classes

Car class
Car :
Objects
Green Red Blu=
Ford Toyota Vol swagon
Mustang Prius Golt
Gasolns Electncty Dasel

Classes are used to distinguish one type of object from
another.

A class is a set of objects that share a common structure and
behavior.

A single object is simply an instance of a class.

A class is a specification of structure (instance variables),
behavior (methods) and inheritance for objects.

Classes are an important mechanism for classifying objects.
A method or behavior of an object is defined by its class.
Each object is an instance of a class.

Eg) Objects of the class Employee

Employee Class

Sue

Bill
Hal

B

John

'|'|
X
—h
(@)
-
c
-5

©

<

Attributes: Object state and Properties

* Properties represent the state of an object.
Eg) the attributes of a car object

Cost
Color
Make

Model

Object Behavior and Methods

In the object model, object behavior is described in methods
or procedures.

A method implements the behavior of an object.

A method is a function or procedure that is defined for a
class and typically can access the internal state of an object
of that class to perform some operation.

Behavior denotes the collection of methods that abstractly
describes what an object is capable of doing.

The object is that on which the method operates.

Methods encapsulate the behavior of the object, provide
interfaces to the object, and hide any of the internal
structures and states maintained by the object.

Objects Respond to Messages

An object’s capabilities are determined by the methods
defined for it.

Objects perform operations in response to messages.
Eg) stop method -> car object
Messages especially are nonspecific function calls.

Different objects can respond to the same message in
different ways-polymorphism

Message is the instruction and method is the implementation.

An object understands a message when it can match the
message to a method that has the same name as the
message.

Brake

Car Object <

| Employee | «_Compute Payroll

Object

* The object first searches the methods defined by its class.

* If not found, it searches the superclass of its class.

* An error occurs if none of the superclass contains the
method.

For Reference Purpose only

Object
Oriented
Programming
Concepts

Abstraction Polymorphism

-

Inheritance Encapsulation

For Reference Purpose only

Class and Object

This is You! An Instance
of Human Class

Human Class and Human Object

For Reference Purpose only

Abstraction

An abstraction includes the essential details relative to the perspective of the viewer

For Reference Purpose only

* Abstraction means displaying only essential
information and hiding the details.

e Data abstraction refers to providing only
essential information about the data to the
outside world, hiding the background details
or implementation.

* Consider a real life example of a man driving a
car.

Encapsulation

Son doesn’t have to worry if Mom

has money with her or has email or Mom has a purse, a

phone etc. He only needs to know
money will be returned when the
method ask() is called.

mobile phone and an
email. These are her
member variables.

l/"

1/'
- ® @
S

asfk()

ask()
B P >
/ \ return money return money
You —the Son

Mom Dad

Mom’s details are hidden or encapsulated from Son.

For Reference Purpose only

Encapsulation and Information Hiding

Principle of concealing the internal data and
procedures of an object and providing an interface to
each object in such a way as to reveal as little as
possible about its inner workings.

Eg) C++ has a very general encapsulation protection
mechanism with public, private and protected
members.

Public members may be accessed from anywhere.

Private members are accessible only from within a
class.

Protected members can be accessed only from
subclasses.

* Per-class protection

— Class methods can access any object of that class
and not just the object or receiver.

* Per-object protection

— Methods can access only the object or receiver.

* Important factor in achieving encapsulation

— The design of different classes of objects that
operate using a common protocol or object’s user
interface.

— This means many objects will respond to the same
message, but each will perform the message using
operations tailored to its class.

Abstraction EncaEsuIation

Abstraction is a general concept formed by = Encapsulation is the mechanism that binds
extracting common features from specific | together code and the data it manipulates,

examples or The act of withdrawing or and keeps both safe from outside

removing something unnecessary. interference and misuse.

You can use abstraction using Interface ' You can implement encapsulation using

and Abstract Class Access Modifiers (Public, Protected &
Private)

Abstraction solves the problem in Design Encapsulation solves the problem in

Level Implementation Level

For simplicity, abstraction means hiding | For simplicity, encapsulation means hiding

Implementation using Abstract classand data using getters and setters
Interface

For Reference Purpose only

Class Hierarchy

An object-oriented system organizes classes
into subclass-superclass hierarchy.

At the top of the class hierarchy are the most
general classes and at the bottom are the
most specific.

A subclass inherits all of the properties and
methods defined in its superclass.

A class may simultaneously be the subclass to
some class and a superclass to another class
or classes.

Fiesta

Taurus

Thunderbird

For Reference Purpose only

Inheritance

Inheritance

You —the Son

You the Son, Inherited qualities from Mom and Dad

For Reference Purpose only

It is the property of object-oriented systems that allows
objects to be built from other objects.

Inheritance is a relationship between classes where one class
is the parent class of another (derived) class.

The parent class is known as the base class or superclass.
Inheritance allows reusability.

Eg) the stop method may not be defined in Taurus class but it
would be defined in Ford class. Then Taurus can reuse that
method from Ford.

Dynamic inheritance allows objects to change and evolve over
time.

It refers to the ability to add, delete, or change parents from
objects or classes at run time.

Multiple Inheritance

 Some object-oriented systems permit a class to inherit its
state and behaviors from more than one superclass.

* This kind of inheritance is referred to as multiple inheritance.

Motor Vehicle

Truck Car Bus

Utility Vehicle

For Reference Purpose only

Polymorphism

now!”
ﬂ‘

For Reference Purpose only

* [t means objects that can take on or assume
many different forms.

* The same operation may behave differently on
different classes.

* Allows us to write generic, reusable code
more easily.

Object Relationships and Associations

Association

A reference from one class to another is an association.

Association represents the relationships between objects and
classes.

Basically a dependency between two or more classes is an
association.

Associations are bidirectional.

The directions implied by the name are the forward direction;
the opposite direction is the inverse direction.

canfly

flown by |

Pilot

For Reference Purpose only

Planes

Cardinality:

Specifies how many instances of one class may relate to a
single instance of an associated class.

Eg) client-account relationship — cardinality is many to many if
one client can have one or more accounts and vice versa.

Consumer-Producer Association

Also known as client-server association or a use relationship.

Viewed as one-way interaction: one object requests the
service of another object.

Requesting object is the consumer and the object that is
receiving and providing the service is the producer.

Aggregations and Object Containment

 All objects, except the most basic ones, are
composed of and may contain other objects.

* Breaking down objects into the objects from which
they are composed is decomposition.

* Since each object has an identity, one object can
refer to other objects. This is known as aggregation,
where an attribute can be an object itself.

Car

Engine Seat Wheel

* A car objectis an aggregation of other objects such as engine, seat and
wheel objects

For Reference Purpose only

OBJECT ORIENTED SYSTEMS DEVELOPMENT
LIFE CYCLE

e Software development process consists of
analysis, design, implementation, testing and
refinement

 Transforms users needs into software solution
that satisfies those needs.

* The prototype give users a chance to
comment on the usability and usefulness of
the design

Analysis Design
/)
\/
Planning Implementation
~ A

Maintenance

1. The software development process

Software development can be viewed as a process.

Development is a process of change, refinement,
transformation or addition to the existing product.

Within the process, it is possible to replace one sub
process with a new one, as long as the new
subprocess has the same interface as the old one, to
allow it to fit into the process as a whole.

With this method of change, it is possible to adapt
the new process.

* The process can be divided into small,
interacting phases- subprocess.

* Each subprocess must have the following:
— A description in terms of how it works.
— Specification of the input required for the process.
— Specification of the output to be produced.

* The software development process

— Can be divided into smaller, interacting sub processes.

— Can be viewed as a series of transformations, where the

output of one transformation becomes the input of the
subsequent transformation.

Transformation 1

O -
—

What are the uses of the
system?

Transformation 2

N+

design

implementation

detail

Transformation 3

Problem

statements

Analysis

L

system

software

product

For Reference Purpose only

Transformation | (analysis):

* Translates the user’s needs into system requirements and
responsibilities.

Transformation Il (design):

* Begins with a problem statement and ends with a detailed
design that can be transformed into an operational system.

It includes the design descriptions, the program and the
testing material.

Transformation lll (implementation):

* Refines the detailed design into the system deployment that
will satisfy the user’s needs.

 Represents embedding the software product within its
operational environment.

2. Waterfall Approach

* Example of software development process.
— Starts with deciding what to be done.
— Next decide how to accomplish them.

— Followed by a step in which we do it, whatever
“it” has required us to do.

— Then test the result to see if we have satisfied the
user’s requirements.

For Reference Purpose only

3. Building High-Quality Software

* Once the system exists, we must test it to see
if it is free of bugs.

* The ultimate goal of building high-quality
software is user satisfaction.

* There are two basic approaches to systems
testing.
— according to how it has been built
— or what it should do

Blum describes 4 quality measures
* Correspondence

— measures how well the delivered system matches the
needs of the operational environment

e Validation

— task of predicting correspondence (Am | building the right
product)

e Correctness

— Measures the consistency of the product requirements
with respect to the design specification.

e Verification

— exercise of determining correctness (Am | building the
product right)

UNIFIED MODELING LANGUAGE

A model is an abstract representation of a system,
constructed to understand the system prior to
building or modifying it.

e Most modelling techniques used for analysis and
design involve graphic languages. These graphic
languages are set of symbols.

* The symbols are used according to certain rules of
the methodology for communicating the complex
relationships of information more clearly than
descriptive text.

Objectory is built around several different models
— Use-case model

* Defines the outside(actors) and inside(use case) of the
system’s behaviour

— Domain object model

* Objects of the “real world” are mapped into the domain
object model.

— Analysis object model

* Presents how the source code should be carried out and
written.

— Implementation model

* Represents the implementation of the system.

— Test model

* Constitutes the test plans, specifications and reports.

e Static Model

— snapshot of a system’s parameters at a specific point of time.

— Static models assume stability and an absence of change in
data over time.

— Class diagram is an example of a static model

* Dynamic Model

— collection of procedures or behaviors that reflect the
behavior of a system over time.

— show how the business objects interact to perform tasks.

— most useful during the design and implementation phases of
the system development.

— The UML interaction diagrams and activity models are
examples of UML dynamic models.

* Need for Modeling
— Clarity
— Familiarity
— Maintenance
— Simplification
* Advantages of Modeling (Turban)
— easier to express complex ideas
— reduction of complexity
— enhance & reinforce learning and training
— cost of the modeling analysis is much lower
— Manipulation of the model is much easier

UML diagrams

1. Use case diagram

2. Class Diagram
3. Behavioral diagrams
- State chart diagrams
- Object diagram
- Activity diagrams
- Interaction diagrams
- Sequence diagrams
- Collaboration diagrams
4. Implementation diagrams
- Component diagram
- Deployment diagram

UML CLASS DIAGRAM

also referred to as object modeling
main static analysis diagram.
Show the static structure of the model.

collection of static modeling elements, such as
classes and their relationships, connected as a
graph to each other and to their contents.

Class Notation: static structure

* Aclassis drawn as a rectangle with three
components separated by horizontal lines.

— top compartment -> holds class name

— middle compartment -> general properties of the
class, such as attributes

— bottom compartment -> holds a list of operations

Active Class

-

+ name ; String .
+ address: String RpELEE

+ addDepartment () Operations

eeeeeeeeeeeeeeeeeeeeeee

Class Interface Notation

* used to describe the externally visible
behavior of a class

e The UML notation for an interface is a small
circle with the name of the interface
connected to the class.

ﬁ

Class0

O

Interface(

<<interface==
Interface0

i

For Reference Purpose only

Binary Association Notation

* A binary association is drawn as a solid path
connecting two classes, or both ends may be
connected to the same class.

* The association name may have an optional
black triangle in it, the point of the triangle
indicating the direction in which to read the
name.

 The end of an association, where it connects
to a class, is called the association role.

Company

« WworksFor

employer

Person

4 marriedTo

For Reference Purpose only

Person

Association Role

e Each association has two or more roles to
which it is connected.

* |[n the above fig, the association worksFor
connects two roles, employee and employer.

* A Person is an employee of a Company and a
Company is an employer of a Person.

Association Navigation or navigability

* isvisually distinguished from interface, which is
denoted by an unfilled arrowhead symbol near the
superclass

* toindicate that navigation is supported in the
direction of the class pointed to.

* The arrows describe navigability.

— Navigable end is indicated by an open arrowhead on the
end of an association

— Not navigable end is indicated with a small x on the end of
an association

— No adornment on the end of an association means
unspecified navigability

A1l B1

Both ends of association have unspecified navigability.

A2 —> B2

A2 has unspecified navigability while B2 is navigable from A2.

A3 is not navigable from B3 while B3 has unspecified navigability.

For Reference Purpose only

A4 —>€ — B4

A4 is not navigable from B4 while B4 is navigable from A4.

AS = — BS

A5 is navigable from B5 and Bj is navigable from As.

A6 B SEEm— B6

A6 is not navigable from B6 and B6 is not navigable from A6.

For Reference Purpose only

Qualifier

A qualifier is an association attribute.

For example, a Member may be associated to
a Club object. An attribute of this association
is the memberid#.

The memberid# is the qualifier of this
association.

A qualifier is shown as a small rectangle
attached to the end of an association path.

Usually smaller than the attached class
rectangle.

Club

memberld g-

w

]

Member

member|d:String

Multiplicity

e Specifies the range of allowable classes.

* A multiplicity specification is shown as a text string
comprised a period-separated sequence of integer
intervals in this format

* lower bound upper bound

* The star character (*) may be used for the upper
bound, denoting an unlimited upper bound

Eg,

0..1

0..*

1...3,7...10, 15, 19...*

1 no more than one Company

0..1 zero or one 1
& many
oA 1.%
0..¥ Zzero or many .

%
1.." one or many Person

For Reference Purpose only

OR Association

* |Indicates a situation in which only one of
several potential associations may be
instantiated at one time for any single object.

* This is shown as a dashed line connecting two
or more associations, all of which must have a
class in common, with the constraint string
{or} labeling the dashed line.

+owner| Corporation

For Reference Purpose only

Association class

e An association class is an association that also
has class properties.

* An association class is shown as a class symbol
attached by a dashed line to an association
path.

X employer
Person | 0] Company

Employment | o

_—Associafion Class

period.dateRange

N-Ary Association

* An n-ary association is an association among
more than two classes.

* |tis shown as a large diamond with a path
from the diamond to each participant class

* An association class symbol may be attached
to the diamond by a dashed line, indicating an
n-ary association that has attributes,
operation or associations.

Class

Year

semester | *

*

/ N\ .
class \:/ student
:

]
1
GradeBook
grade
exam
lab

For Reference Purpose only

Student

Aggregation

Aggregation is a form of association.

A hollow diamond is attached to the end of the path
to indicate aggregation.

However, the diamond may not be attached to both
ends of a line.

Composition

Also known as the a-part-of, is a form of aggregation
with strong ownership to represent the component of
a complex object.

Also referred to as a part-whole relationship.

UML notation for composition is a solid diamond at
the end of the path.

Composition: every car has an engine.

Aggregation: cars may have passengers, they come and go

For Reference Purpose only

Association

> [oeeeg]

Aggregation

‘Class A \()— Class B

Composition

@ —F——— |Class B

For Reference Purpose only

Generalization

* Generalization is the relationship between a
more general class and a more specific class.

* Generalization is displayed as a directed line
with a closed, hollow arrowhead at the
superclass end.

Vehicle

TN

LandVehicles AirCraft
‘\ / \
Prnrate Comm ercial Private Com
Automobile Motorcycle Bus Semi Airliner Helicopter

For Reference Purpose only

USE CASE DIAGRAM

* A use case diagram establishes the capability
of the system as a whole.

* Components of use case diagram:

* Actor

* Use case

e System boundary
e Relationship

e Actor relationship

system Boundary
|

i

Association

\
|

Actor = = = »

Cellular Phone External Phone

Company

- Use Case

Customer

For Reference Purpose only

Actor

* An actor is someone or something that must interact
with the system under development

e Actors are not part of the system they represent

anyone or anything that must interact with the
system.

* Actors carry out use cases and a single actor may
perform more than one use cases.

* An actor may

— Input information to the system.
— Receive information from the system.
— Input to and out from the system.

Actor

For Reference Purpose only

4-Categories of an actor

* Principle : Who uses the main system
functions.
* Secondary : Who takes care of administration
& maintenance.
e External h/w : The h/w devices which are part
of application domain a must be used.
e Other system: The other system with which the
system must interact.

USE CASE

* A use case is a pattern of behavior, the system
exhibits

* Each use case is a sequence of related
transactions performed by an actor and the
system in dialogue.

 USE CASE is dialogue between an actor and
the system.

USE CASE documentation example

* The following use case describes the process of
opening a new account in the bank.
Use case :Open new account
Actors : Customer, Cashier, Manager
Purpose : Like to have new saving account.
Description:
A customer arrives in the bank to open the new account.
Customer requests for the new account form, fill the same
and submits, along with the minimal deposit. At the end of

complete successful process customer receives the
passbook.

Type : Primary use case.

Relationship

* Relationship between use case and actor.

— Communicates

* Relationship between two use cases

— Extends — is used when you have one use case
that is similar to another use case but does a bit
more.

— Uses
* Notation used to show the relationships:
<< >>

Commd

-~
-
-

<<extepd$>’

=~ <<include>>

: >}
~
N\
SN
. \
<<include>>~
S
~
A
\\
» _ <<include>>
Park | et Dol Brake

For Reference Purpose only

