
Created by- TopperTopperWorldWorld

Interview Question

TOP 30

©Topperworld

©Topperworld

Q 1. What is Object Oriented Programming (OOPs)?

Ans : Object Oriented Programming (also known as OOPs) is a programming

paradigm where the complete software operates as a bunch of objects

talking to each other.

An object is a collection of data and the methods which operate on that data.

Q 2. Why OOPs?

Ans :

The main advantage of OOP is better manageable code that covers the

following:

1) The overall understanding of the software is increased as the distance

between the language spoken by developers and that spoken by users.

2) Object orientation eases maintenance by the use of

encapsulation. One can easily change the underlying representation by

keeping the methods the same.

3) The OOPs paradigm is mainly useful for relatively big software.

Q 3. What is a Class?

Ans : A class is a building block of Object Oriented Programs. It is a user-

defined data type that contains the data members and member functions

that operate on the data members. It is like a blueprint or template of

objects having common properties and methods.

http://topperworld.in/
http://topperworld.in/
http://topperworld.in/)
https://topperworld.in/dsa-tutorial/

©Topperworld

©Topperworld

Q 4. What is an Object?

Ans : An object is an instance of a class.

Data members and methods of a class cannot be used directly.

We need to create an object (or instance) of the class to use them.

In simple terms, they are the actual world entities that have a state and

behavior.

Eg. The code below shows is an example in C++ of how an instance of a class

(i.e an object) of a class is created

#include <iostream>

using namespace std;

class Student{

private:

 string name;

 string surname;

 int rollNo;

public:

 Student(string studentName, string studentSurname, int

studentRollNo){

 name = studentName;

 surname = studentSurname;

 rollNo = studentRollNo;

 }

 void getStudentDetails(){

 cout <<"The name of the student is "<< name

http://topperworld.in/
http://topperworld.in/
http://topperworld.in/)

©Topperworld

©Topperworld

Output :

Q 5. What are the main features of OOPs?

Ans :The main feature of the OOPs, also known as 4 pillars or basic principles

of OOPs are as follows:

❖ Encapsulation

❖ Data Abstraction

❖ Polymorphism

❖ Inheritance

The name of the student is Vivek Yadav

The roll no of the student is 20

<<""<< surname << endl;

 cout <<"The roll no of the student is "<< rollNo <<

endl;

 }

};

int main() {

 Student student1("Vivek", "Yadav", 20);

 student1.getStudentDetails();

 return 0;

}

http://topperworld.in/
http://topperworld.in/
http://topperworld.in/)

©Topperworld

©Topperworld

Q 6. What is Encapsulation?

Ans :Encapsulation is the binding of data and methods that manipulate them

into a single unit such that the sensitive data is hidden from the users

It is implemented as the processes mentioned below:

1) Data hiding: A language feature to restrict access to members of an

object. For example, private and protected members in C++.

2) Bundling of data and methods together: Data and methods that operate

on that data are bundled

together.

For example, the data

members and member

methods that operate on them

are wrapped into a single unit

known as a class.

http://topperworld.in/
http://topperworld.in/
http://topperworld.in/)
https://topperworld.in/

©Topperworld

©Topperworld

public class Student {

 // private data members

 private String name;

 private int rollNo;

 // public getter method to access the name

 public String getName() {

 return name;

 }

 // public getter method to access rollNo

 public int getRollNo() {

 return rollNo;

 }

 // public setter method to set name

 public void setName(String name) {

 this.name = name;

 }

 // public setter method to set rollNo

 public void setRollNo(int rollNo) {

 this.rollNo = rollNo;

 }

}

http://topperworld.in/
http://topperworld.in/
http://topperworld.in/)
https://topperworld.in/cpp-tutorial/

©Topperworld

©Topperworld

Q 7. What is Abstraction?

Ans : Abstraction is similar to data encapsulation and is very important in

OOP.

It means showing only the necessary information and hiding the other

irrelevant information from the user.

Abstraction is implemented using classes and interfaces.

Q 8. What is Polymorphism?

Ans : The word “Polymorphism” means having many forms.

It is the property of some code to behave differently for different contexts.

For example, in C++ language, we can define multiple functions having the

same name but different working depending on the context.

Polymorphism can be classified into two types based on the time when the

call to the object or function is resolved. They are as follows:

A. Compile Time Polymorphism

B. Runtime Polymorphism

http://topperworld.in/
http://topperworld.in/
http://topperworld.in/)

©Topperworld

©Topperworld

A) Compile-Time Polymorphism

Compile time polymorphism, also known as static polymorphism or early

binding is the type of polymorphism where the binding of the call to its code

is done at the compile time.

Method overloading or operator overloading are examples of compile-time

polymorphism.

B) Runtime Polymorphism

Also known as dynamic polymorphism or late binding, runtime

polymorphism is the type of polymorphism where the actual implementation

of the function is determined during the runtime or execution. Method

overriding is an example of this method.

Q 9. What is Inheritance? What is its purpose?

Ans : The idea of inheritance is simple, a class is derived from another class

and uses data and implementation of that other class.

The class which is derived is called child or derived or subclass and the class

from which the child class is derived is called parent or base or superclass.

The main purpose of Inheritance is to increase code reusability. It is also

used to achieve Runtime Polymorphism.

http://topperworld.in/
http://topperworld.in/
http://topperworld.in/)
https://topperworld.in/dsa-tutorial/

©Topperworld

©Topperworld

Q 10. What are access specifiers? What is their significance in OOPs?

Ans : Access specifiers are special types of keywords that are used to

specify or control the accessibility of entities like classes, methods, and so

on. Private, Public, and Protected are examples of access specifiers or access

modifiers.

The key components of OOPs, encapsulation and data hiding, are largely

achieved because of these access specifiers.

// an example of inheritance

class Student {

public void read() {

 System.out.println("The student is reading");

}

}

class SchoolStudent extends Student {

public void read(String book) {

 System.out.println("the student is reding "+

book);

}

}

class User {

public String userName;

protected String userEmail;

private String password;

public void setPassword(String password) {

 this.password = password;

}

}

http://topperworld.in/
http://topperworld.in/
http://topperworld.in/)

©Topperworld

©Topperworld

Q 11. What are the advantages and disadvantages of OOPs?

Ans :

Advantages of OOPs Disadvantages of OOPs

OOPs provides enhanced code

reusability.

 The programmer should be well-skilled

and should have excellent thinking in

terms of objects as everything is treated

as an object in OOPs.

The code is easier to maintain

and update.

Proper planning is required because OOPs

is a little bit tricky.

It provides better data security

by restricting data access and

avoiding unnecessary exposure.

OOPs concept is not suitable for all kinds

of problems.

Fast to implement and easy to The length of the programs is much larger

public class OOPS {

public static void main(String args[]) {

 User user1 = new User();

 user1.userName = "Vivek_Kumar_Yadav";

 user1.setPassword("abcd@12345");

 user1.userEmail = "abc@gmail.com";

}

}

http://topperworld.in/
http://topperworld.in/
http://topperworld.in/)

©Topperworld

©Topperworld

Advantages of OOPs Disadvantages of OOPs

redesign resulting in minimizing

the complexity of an overall

program.

in comparison to the procedural approach.

Q 12. What other paradigms of programming exist besides OOPs?

Ans :The programming paradigm is referred to the technique or approach of

writing a program.

The programming paradigms can be classified into the following types:

1. Imperative Programming Paradigm

It is a programming paradigm that works by changing the program state

through assignment statements.

The main focus in this paradigm is on how to achieve the goal. The following

programming paradigms come under this category:

http://topperworld.in/
http://topperworld.in/
http://topperworld.in/)

©Topperworld

©Topperworld

➢ Procedural Programming Paradigm: This programming paradigm is

based on the procedure call concept. Procedures, also known as routines

or functions are the basic building blocks of a program in this paradigm.

➢ Object-Oriented Programming or OOP: In this paradigm, we visualize

every entity as an object and try to structure the program based on the

state and behavior of that object.

➢ Parallel Programming: The parallel programming paradigm is the

processing of instructions by dividing them into multiple smaller parts

and executing them concurrently.

2. Declarative Programming Paradigm

Declarative programming focuses on what is to be executed rather than how

it should be executed.

In this paradigm, we express the logic of a computation without considering

its control flow.

The declarative paradigm can be further classified into:

➢ Logical Programming Paradigm: It is based on formal logic where the

program statements express the facts and rules about the problem in the

logical form.

➢ Functional Programming Paradigm: Programs are created by applying

and composing functions in this paradigm.

➢ Database Programming Paradigm: To manage data and information

organized as fields, records, and files, database programming models are

utilized.

http://topperworld.in/
http://topperworld.in/
http://topperworld.in/)
https://topperworld.in/ebook-store/

©Topperworld

©Topperworld

Q 13. What is the difference between Structured Programming and

Object Oriented Programming?

Ans :

Structured Programming is a technique that is considered a precursor to OOP

and usually consists of well-structured and separated modules.

It is a subset of procedural programming.

The difference between OOPs and Structured Programming is as follows:

Object-Oriented Programming Structural Programming

Programming that is object-

oriented is built on objects having

a state and behavior.

A program ’ s logical structure is

provided by structural programming,

which divides programs into their

corresponding functions.

It follows a bottom-to-top

approach.

It follows a Top-to-Down approach.

Restricts the open flow of data to

authorized parts only providing

better data security.

No restriction to the flow of data.

Anyone can access the data.

Enhanced code reusability due to

the concepts of polymorphism

and inheritance.

Code reusability is achieved by using

functions and loops.

In this, methods are written In this, the method works dynamically,

http://topperworld.in/
http://topperworld.in/
http://topperworld.in/)

©Topperworld

©Topperworld

Object-Oriented Programming Structural Programming

globally and code lines are

processed one by one i.e., Run

sequentially.

making calls as per the need of code for

a certain time.

Modifying and updating the code

is easier.

Modifying the code is difficult as

compared to OOPs.

Data is given more importance in

OOPs.

Code is given more importance.

Q 14. What are some commonly used Object Oriented Programming

Languages?

Ans :

OOPs paradigm is one of the most popular programming paradigms.

It is widely used in many popular programming languages such as:

◆ C++

◆ Java

◆ Python

◆ Javascript

◆ C#

◆ Ruby

http://topperworld.in/
http://topperworld.in/
http://topperworld.in/)
https://www.geeksforgeeks.org/c-plus-plus/
https://www.geeksforgeeks.org/java/
https://www.geeksforgeeks.org/python-programming-language/
https://www.geeksforgeeks.org/javascript/
https://www.geeksforgeeks.org/csharp-programming-language/
https://www.geeksforgeeks.org/ruby-programming-language/

©Topperworld

©Topperworld

Q 15. What are the different types of Polymorphism?

Ans : Polymorphism can be classified into two types based on the time when

the call to the object or function is resolved. They are as follows:

1) Compile Time Polymorphism

2) Runtime Polymorphism

A) Compile-Time Polymorphism

Compile time polymorphism, also known as static polymorphism or early

binding is the type of polymorphism where the binding of the call to its code

is done at the compile time.

Method overloading or operator overloading are examples of compile-time

polymorphism.

B) Runtime Polymorphism

Also known as dynamic polymorphism or late binding, runtime

polymorphism is the type of polymorphism where the actual implementation

of the function is determined during the runtime or execution.

Method overriding is an example of this method.

http://topperworld.in/
http://topperworld.in/
http://topperworld.in/)

©Topperworld

©Topperworld

Q16. What is the difference between overloading and overriding?

Ans :A compile-time polymorphism feature called overloading allows an

entity to have numerous implementations of the same name.

Method overloading and operator overloading are two examples.

Overriding is a form of runtime polymorphism where an entity with the same

name but a different implementation is executed.

It is implemented with the help of virtual functions.

Q 17. Are there any limitations on Inheritance?

Ans :

Yes, there are more challenges when you have more authority. Although

inheritance is a very strong OOPs feature, it also has significant drawbacks.

⚫ As it must pass through several classes to be implemented, inheritance

takes longer to process.

⚫ The base class and the child class, which are both engaged in inheritance,

are also closely related to one another (called tightly coupled).

Therefore, if changes need to be made, they may need to be made in

both classes at the same time.

⚫ Implementing inheritance might be difficult as well. Therefore, if not

implemented correctly, this could result in unforeseen mistakes or

inaccurate outputs.

http://topperworld.in/
http://topperworld.in/
http://topperworld.in/)
https://topperworld.in/dsa-tutorial/
https://topperworld.in/ebook-store/

©Topperworld

©Topperworld

Q 18 . What different types of inheritance are there?

Ans :

Inheritance can be classified into 5 types which are as follows:

1) Single Inheritance: Child class derived directly from the base class

2) Multiple Inheritance: Child class derived from multiple base classes.

3) Multilevel Inheritance: Child class derived from the class which is also

derived from another base class.

4) Hierarchical Inheritance: Multiple child classes derived from a single

base class.

5) Hybrid Inheritance: Inheritance consisting of multiple inheritance

types of the above specified.

http://topperworld.in/
http://topperworld.in/
http://topperworld.in/)

©Topperworld

©Topperworld

Q 19. What is an interface?

Ans : A unique class type known as an interface contains methods but not

their definitions.

Inside an interface, only method declaration is permitted.

You cannot make objects using an interface. Instead, you must put that

interface into use and specify the procedures for doing so.

Q 20. How is an abstract class different from an interface?

Ans :Both abstract classes and interfaces are special types of classes that

just include the declaration of the methods, not their implementation.

An abstract class is completely distinct from an interface, though.

Following are some major differences between an abstract class and an

interface.

Abstract Class Interface

When an abstract class is inherited,

however, the subclass is not required

to supply the definition of the

abstract method until and unless the

subclass actually uses it.

When an interface is implemented,

the subclass is required to specify

all of the interface’s methods as

well as their implementation.

A class that is abstract can have both

abstract and non-abstract methods.

An interface can only have abstract

methods.

An abstract class can have final, non- The interface has only static and

http://topperworld.in/
http://topperworld.in/
http://topperworld.in/)

©Topperworld

©Topperworld

Abstract Class Interface

final, static and non-static variables.

final variables.

Abstract class doesn ’ t support

multiple inheritance.

An interface supports multiple

inheritance.

Q 21. How much memory does a class occupy?

Ans : Classes do not use memory.

They merely serve as a template from which items are made.

Now, objects actually initialize the class members and methods when they

are created, using memory in the process.

Q22. Is it always necessary to create objects from class?

Ans :

No. If the base class includes non-static methods, an object must be

constructed.

But no objects need to be generated if the class includes static methods.

In this instance, you can use the class name to directly call those static

methods.

http://topperworld.in/
http://topperworld.in/
http://topperworld.in/)
https://topperworld.in/ebook-store/

©Topperworld

©Topperworld

Q23. What is the difference between a structure and a class in C++?

Ans :

The structure is also a user-defined datatype in C++ similar to the class with

the following differences:

⚫ The major difference between a structure and a class is that in a

structure, the members are set to public by default while in a class,

members are private by default.

⚫ The other difference is that we use struct for declaring structure

and class for declaring a class in C++.

Q 24. What is Constructor?

Ans :

A constructor is a block of code that initializes the newly created object.

A constructor resembles an instance method but it’s not a method as it

doesn’t have a return type.

It generally is the method having the same name as the class but in some

languages, it might differ.

For example:

In python, a constructor is named __init__.

In C++ and Java, the constructor is named the same as the class name.

class Student {

 String name;

 int rollNo;

 Student()

 {

 System.out.println("contructor is called");

 }

}

http://topperworld.in/
http://topperworld.in/
http://topperworld.in/)

©Topperworld

©Topperworld

Q 25. What are the various types of constructors in C++?

Ans :

The most common classification of constructors includes:

1) Default Constructor

2) Parameterized Constructor

3) Copy Constructor

1. Default Constructor

• The default constructor is a constructor that doesn’t take any

arguments. It is a non-parameterized constructor that is automatically

defined by the compiler when no explicit constructor definition is

provided.

• It initializes the data members to their default values.

2. Parameterized Constructor

• It is a user-defined constructor having arguments or parameters.

3. Copy Constructor
• A copy constructor is a member function that initializes an object using

another object of the same class.

• In Python, we do not have built-in copy constructors like Java and C++

but we can make a workaround using different methods.

Q 26. What is a destructor?

Ans : A destructor is a method that is automatically called when the object is

made of scope or destroyed.

In C++, the destructor name is also the same as the class name but with the

(~) tilde symbol as the prefix.

http://topperworld.in/
http://topperworld.in/
http://topperworld.in/)

©Topperworld

©Topperworld

In Python, the destructor is named __del__.

Q27. Can we overload the constructor in a class?

Ans :We can overload the constructor in a class.

In fact, the default constructor, parameterized constructor, and copy

constructor are the overloaded forms of the constructor.

Q 28. Can we overload the destructor in a class?

Ans :

No. A destructor cannot be overloaded in a class. The can only be one

destructor present in a class.

Q 29. What is the virtual function?

Ans : A virtual function is a function that is used to override a method of the

parent class in the derived class.

It is used to provide abstraction in a class.

In C++, a virtual function is declared using the virtual keyword,

In Java, every public, non-static, and non-final method is a virtual function.

Python methods are always virtual.

http://topperworld.in/
http://topperworld.in/
http://topperworld.in/)
https://topperworld.in/dsa-tutorial/

©Topperworld

©Topperworld

Q 30. What is pure virtual function?

Ans :

A pure virtual function, also known as an abstract function is a member

function that doesn’t contain any statements.

This function is defined in the derived class if needed.

ABOUT US

At TopperWorld, we are on a mission to empower college students with the

knowledge, tools, and resources they need to succeed in their academic

journey and beyond.

➢ Our Vision

❖ Our vision is to create a world where every college student can easily

access high-quality educational content, connect with peers, and achieve

their academic goals.

❖ We believe that education should be accessible, affordable, and engaging,

and that's exactly what we strive to offer through our platform.

abstract class base {

 abstract void prVirFunc();

}

http://topperworld.in/
http://topperworld.in/
http://topperworld.in/)

©Topperworld

©Topperworld

➢ Unleash Your Potential

❖ In an ever-evolving world, the pursuit of knowledge is essential.

TopperWorld serves as your virtual campus, where you can explore a

diverse array of online resources tailored to your specific college

curriculum.

❖ Whether you're studying science, arts, engineering, or any other discipline,

we've got you covered.

❖ Our platform hosts a vast library of e-books, quizzes, and interactive

study tools to ensure you have the best resources at your fingertips.

➢ The TopperWorld Community

❖ Education is not just about textbooks and lectures; it's also about forming

connections and growing together.

❖ TopperWorld encourages you to engage with your fellow students, ask

questions, and share your knowledge.

❖ We believe that collaborative learning is the key to academic success.

➢ Start Your Journey with TopperWorld

❖ Your journey to becoming a top-performing college student begins with

TopperWorld.

❖ Join us today and experience a world of endless learning possibilities.

❖ Together, we'll help you reach your full academic potential and pave the

way for a brighter future.

❖ Join us on this exciting journey, and let's make academic success a reality

for every college student.

http://topperworld.in/
http://topperworld.in/
http://topperworld.in/)

DSA Tutorial C Tutorial C++ Tutorial

Java Tutorial Python Tutorial

Explore More

“Unlock Your
Potential”

With- TopperTopperWorldWorld

topperworld.in

Follow Us On E-mail

topperworld.in@gmail.com

https://topperworld.in/dsa-tutorial/
https://topperworld.in/c-tutorial/
https://topperworld.in/cpp-tutorial/
https://topperworld.in/java-tutorial/
https://topperworld.in/python-tutorial-2/
https://www.linkedin.com/company/topperworld/
https://www.instagram.com/topperworld.in/
https://topperworld.in/
https://topperworld.in/
https://topperworld.in/

