
Created by- TopperTopperWorldWorld

Interview Question

TOP 50

©Topperworld

Q 1. Why is C called a mid-level programming language?

Ans :

Due to its ability to support both low-level and high-level features, C is

considered a middle-level language.

It is both an assembly-level language, i.e. a low-level language, and a

higher-level language.

Programs that are written in C are converted into assembly code, and they

support pointer arithmetic (low-level) while being machine-independent

(high-level).

Therefore, C is often referred to as a middle-level language.

C can be used to write operating systems and menu-driven consumer billing

systems.

Q 2. What are the features of the C programming language?

Ans :

©Topperworld

Q 3. What are basic data types supported in the C Programming

Language?

Ans :

Each variable in C has an associated data type.

Each data type requires different amounts of memory and has some specific

operations which can be performed over it.

It specifies the type of data that the variable can store like integer, character,

floating, double, etc.

In C data types are broadly classified into 3 categories:

Primitive data types: Primitive data types can be further classified into

integer, and floating data types.

User Defined data types: These data types are defined by the user to make

the program more readable.

Derived data types: Data types that are derived from primitive or built-in

data types.

©Topperworld

Q 4. What are tokens in C?

Ans : Tokens are identifiers or the smallest single unit in a program that is

meaningful to the compiler. In C we have the following tokens:

➢ Keywords: Predefined or reserved words in the C programming language.

Every keyword is meant to perform a specific task in a program. C

Programming language supports 32 keywords.

➢ Identifiers: Identifiers are user-defined names that consist of an

arbitrarily long sequence of digits or letters with either a letter or the

underscore (_) as a first Character. Identifier names can’t be equal to

any reserved keywords in the C programming language. There are a set

of rules which a programmer must follow in order to name an identifier in

C.

➢ Constants: Constants are normal variables that cannot be modified in the

program once they are defined. Constants refer to a fixed value. They are

also referred to as literals.

©Topperworld

➢ Strings: Strings in C are an array of characters that end with a null

character (‘\0). Null character indicates the end of the string;

➢ Special Symbols: Some special symbols in C have some special meaning

and thus, they cannot be used for any other purpose in the program. # =

{} () , * ; [] are the special symbols in C programming language.

➢ Operators: Symbols that trigger an action when they are applied to any

variable or any other object. Unary, Binary, and ternary operators are

used in the C Programming language.

Q 5. What do you mean by the scope of the variable?

Ans :

Scope in a programming language is the block or a region where a defined

variable will have its existence and beyond that region, the variable is

automatically destroyed. Every variable has its defined scope. In simple

terms, the scope of a variable is equal to its life in the program. The variable

can be declared in three places These are:

) Local Variables: Inside a given function or a block

) Global Variables: Out of all functions globally inside the program.

) Formal Parameters: In-function parameters only.

Q 6. What are preprocessor directives in C?

Ans : In C preprocessor directives are considered the built-in predefined

functions or macros that act as a directive to the compiler and are executed

before the program execution.

There are multiple steps involved in writing and executing a program in C.

©Topperworld

Main types of Preprocessor Directives are Macros, File Inclusion, Conditional

Compilation, and Other directives like #undef, #pragma, etc.

Q 7. What is the use of static variables in C?

Ans : Static variables in the C programming language are used to preserve

the data values between function calls even after they are out of their scope.

Static variables preserve their values in their scope and they can be used

again in the program without initializing again.

Static variables have an initial value assigned to 0 without initialization.

Example:

// C program to print initial

// value of static variable

#include <stdio.h>

int main()

{

 static int var;

 int x;

 printf("Initial value of static variable %d\n", var);

 printf("Initial value of variable without static

%d", x);

 return 0;

}

©Topperworld

Output:

Q 8. What is the difference between malloc() and calloc() in the C

programming language?

Ans :

calloc() and malloc() library functions are used to allocate dynamic memory.

Dynamic memory is the memory that is allocated during the runtime of the

program from the heap segment. “stdlib.h” is the header file that is used

to facilitate dynamic memory allocation in the C Programming language.

Parameter Malloc() Calloc()

Definition It is a function that creates

one block of memory of a

fixed size.

It is a function that assigns more

than one block of memory to a

single variable.

Number of

arguments

It only takes one

argument.
It takes two arguments.

Speed malloc() function is faster

than calloc().
calloc() is slower than malloc().

Efficiency It has high time efficiency. It has low time efficiency.

Usage It is used to indicate It is used to indicate contiguous

Initial value of static variable 0

Initial value of variable without static 0

©Topperworld

Parameter Malloc() Calloc()

memory allocation. memory allocation.

Q 9. What do you mean by dangling pointers and how are dangling

pointers different from memory leaks in C programming?

Ans :

⚫ Pointers pointing to deallocated memory blocks in C Programming are

known as dangling pointers i.e, whenever a pointer is pointing to a

memory location and In case the variable is deleted and the pointer still

points to that same memory location then it is known as a dangling

pointer variable.

⚫ In C programming memory leak occurs when we allocate memory with

the help of the malloc() or calloc() library function, but we forget to free

the allocated memory with the help of the free() library function. Memory

leak causes the program to use an undefined amount of memory from

the RAM which makes it unavailable for other running programs this

causes our program to crash.

Q 10. Write a program to convert a number to a string with the help

of sprintf() function in the C library.

Ans :

©Topperworld

Example:

Output :

Q 11. What is recursion in C?

Ans : Recursion is the process of making the function call itself directly or

indirectly.

A recursive function solves a particular problem by calling a copy of itself

and solving smaller subproblems that sum up the original problems.

// C program to convert number to

// string using sprintf()

#include <stdio.h>

#include <string.h>

// Driver code

int main()

{

 char res[20];

 float a = 32.23;

 sprintf(res, "%f", a);

 printf("\nThe string for the num is %s", res);

 return 0;

}

The string for the num is 32.230000

©Topperworld

Recursion helps to reduce the length of code and make it more

understandable.

The recursive function uses a LIFO (Last In First Out) structure like a stack.

Every recursive call in the program requires extra space in the stack memory.

Q 12. What is the difference between the local and global variables

in C?

Ans :

Local variables are declared inside a block or function but global variables

are declared outside the block or function to be accessed globally.

Local Variables Global Variables

Declared inside a block or a function.
Variables that are declared outside

the block or a function.

By default, variables store a garbage

value.

By default value of the global value

is zero.

The life of the local variables is

destroyed after the block or a

function.

The life of the global variable exists

until the program is executed.

Variables are stored inside the stack

unless they are specified by the

programmer.

The storage location of the global

variable is decided by the compiler.

To access the local variables in other

functions parameter passing is

required.

No parameter passing is required.

They are globally visible throughout

the program.

©Topperworld

Q 13. What are pointers and their uses?

Ans : Pointers are used to store the address of the variable or a memory

location.

Pointer can also be used to refer to another pointer function.

The main purpose of the pointer is to save memory space and increase

execution time.

Uses of pointers are:

➢ To pass arguments by reference

➢ For accessing array elements

➢ To return multiple values

➢ Dynamic memory allocation

➢ To implement data structures

➢ To do system-level programming where memory addresses are useful

Q 14. What is typedef in C?

Ans : In C programming, typedef is a keyword that defines an alias for an

existing type.

©Topperworld

Whether it is an integer variable, function parameter, or structure

declaration, typedef will shorten the name.

Syntax:

Here,

• existing type is already given a name.

• alias name is the new name for the existing variable.

Q 15. What are loops and how can we create an infinite loop in C?

Ans : Loops are used to execute a block of statements repeatedly.

The statement which is to be repeated will be executed n times inside the

loop until the given condition is reached.

There are two types of loops Entry controlled and Exit-controlled loops in

the C programming language.

An Infinite loop is a piece of code that lacks a functional exit. So, it repeats

indefinitely.

There can be only two things when there is an infinite loop in the program.

One it was designed to loop endlessly until the condition is met within the

loop.

typedef <existing-type> <alias-name>

©Topperworld

Another can be wrong or unsatisfied break conditions in the program.

Example :

// C program for infinite loop

// using for, while, do-while

#include <stdio.h>

// Driver code

int main()

{

 for (;;) {

 printf("Infinite-loop\n");

 }

 while (1) {

 printf("Infinite-loop\n");

 }

 do {

 printf("Infinite-loop\n");

 } while (1);

 return 0;

}

©Topperworld

Q 16. What is the difference between type casting and type

conversion?

Ans :

Type Casting Type Conversion

The data type is converted to

another data type by a

programmer with the help of a

casting operator.

The data type is converted to

another data by a compiler.

It can be applied to both

compatible data types as well as

incompatible data types.

Type conversion can only be

applied to only compatible data

types.

In Type casting in order to cast

the data type into another data

type, a caste operator is needed

In type conversion, there is no need

for a casting operator.

Type casting is more efficient

and reliable.

Type conversion is less efficient

and less reliable than type casting.

Type casting takes place during

the program design by the

programmer.

Type conversion is done at compile

time.

Syntax:

destination_data_type =

(target_data_type)

Syntax:

int a = 20; float b; b = a; // a =

20.0000

©Topperworld

Type Casting Type Conversion

variable_to_be_converted;

Q 17. What are header files and their uses?

Ans : C language has numerous libraries which contain predefined functions

to make programming easier.

Header files contain predefined standard library functions.

All header files must have a ‘.h’ extension.

Header files contain function definitions, data type definitions, and macros

which can be imported with the help of the preprocessor directive

‘#include’. Preprocessor directives instruct the compiler that these files

are needed to be processed before the compilation.

There are two types of header files i.e, User-defined header files and Pre-

existing header files.

For example, if our code needs to take input from the user and print desired

output to the screen then ‘stdio.h’ header file must be included in the

program as #include<stdio.h>.

This header file contains functions like scanf() and printf() which are used to

take input from the user and print the content.

Q 18. What are the functions and their types?

Ans : The function is a block of code that is used to perform a task multiple

times rather than writing it out multiple times in our program. Functions

avoid repetition of code and increase the readability of the program.

©Topperworld

Modifying a program becomes easier with the help of function and hence

reduces the chances of error.

There are two types of functions:

) User-defined Functions: Functions that are defined by the user to

reduce the complexity of big programs. They are built only to satisfy the

condition in which the user is facing issues and are commonly known as

“tailor-made functions”.

) Built-in Functions: Library functions are provided by the compiler

package and consist of special functions with special and different

meanings. These functions give programmers an edge as we can directly

use them without defining them.

Q 19. What is the difference between macro and functions?

Ans :

A macro is a name that is given to a block of C statements as a pre-processor

directive.

Macro is defined with the pre-processor directive. Macros are pre-processed

which means that all the macros would be preprocessed before the

compilation of our program.

However, functions are not preprocessed but compiled.

Macro Function

Macros are preprocessed. Functions are compiled.

Code length is increased using macro.
Code length remains unaffected

using function.

Execution speed using a macro is faster. Execution speed using function is

©Topperworld

Macro Function

slower.

The macro name is replaced by the

macro value before compilation.

Transfer of control takes place

during the function call.

Macro doesn’t check any Compile-Time

Errors.

Function check Compile-time

errors.

Q 20. How to convert a string to numbers in C?

Ans : In C we have 2 main methods to convert strings to numbers i.e, Using

string stream, Using stoi() library Function, and using atoi() library function.

➢ sscanf(): It reads input from a string rather than standard input.

➢ atoi(): This function takes a string literal or a character array as an

argument and an integer value is returned.

Q 21. What are reserved keywords?

Ans : Every keyword is meant to perform a specific task in a program.

Their meaning is already defined and cannot be used for purposes other than

what they are originally intended for.

C Programming language supports 32 keywords.

Some examples of reserved keywords are auto, else, if, long, int, switch,

typedef, etc.

©Topperworld

Q 22. What is a structure?

Ans : The structure is a keyword that is used to create user-defined data

types.

The structure allows storing multiple types of data in a single unit.

The structure members can only be accessed through the structure variable.

Below is the C program to implement structure:

Example:

struct student

{

 char name[20];

 int roll_no;

 char address[20];

 char branch[20];

};

#include <stdio.h>

#include <string.h>

// Structure student declared

struct student {

 char name[20];

 int roll_no;

 char address[50];

 char branch[50];

};

int main()

©Topperworld

Output :

{

 struct student obj;

strcpy(obj.name, "Kamlesh_Joshi");

 obj.roll_no = 27;

 strcpy(obj.address, "Haldwani");

 strcpy(obj.branch, "Computer Science And

Engineering");

printf("Name: %s\n", obj.name);

 printf("Roll_No: %d \n", obj.roll_no);

 printf("Address: %s\n", obj.address);

 printf("Branch: %s", obj.branch);

 return 0;

}

Name: Kamlesh_Joshi

Roll_No: 27

Address: Haldwani

Branch: Computer Science And Engineering

©Topperworld

Q 23. What is union?

Ans : A union is a user-defined data type that allows users to store multiple

types of data in a single unit. However, a union does not occupy the sum of

the memory of all members.

It holds the memory of the largest member only. Since the union allocates

one common space for all the members we can access only a single variable

at a time.

The union can be useful in many situations where we want to use the same

memory for two or more members.

Syntax:

24. What is an r-value and l -value?

Ans:

• An “l-value” refers to an object with an identifiable location in

memory (i.e. having an address).

• An “l-value” will appear either on the right or left side of the

assignment operator(=).

• An “r-value” is a data value stored in memory at a given address. An

“r-value” refers to an object without an identifiable location in

memory (i.e. without an address).

union name_of_union

{

 data_type name;

 data_type name;

};

©Topperworld

• An “r-value” is an expression that cannot be assigned a value,

therefore it can only exist on the right side of an assignment operator

(=).

Example:

Here, val is the ‘l-value’, and 20 is the ‘r-value’.

Q 25. What is the difference between call by value and call by

reference?

Ans :

Call by value Call by Reference

Values of the variable are passed while

function calls.

The address of a variable(location

of variable) is passed while the

function call.

Dummy variables copy the value of

each variable in the function call.

Dummy variables copy the

address of actual variables.

Changes made to dummy variables in

the called function have no effect on

actual variables in the calling function.

We can manipulate the actual

variables using addresses.

A simple technique is used to pass the

values of variables.

The address values of variables

must be stored in pointer

variables.

int val = 20;

©Topperworld

Q 26. What is the sleep() function?

Ans :

• sleep() function in C allows the users to wait for a current thread for a

given amount of time.

• sleep() function will sleep the present executable for the given amount

of time by the thread but other operations of the CPU will function

properly. sleep() function returns 0 if the requested time has elapsed.

Q 27. What are enumerations?

Ans : In C, enumerations (or enums) are user-defined data types.

Enumerations allow integral constants to be named, which makes a program

easier to read and maintain.

For example, the days of the week can be defined as an enumeration and can

be used anywhere in the program.

enum enumeration_name{constant1, constant2, ... };

Example:

// An example program to demonstrate working

// of enum in C

#include <stdio.h>

enum week { Mon, Tue, Wed, Thur, Fri, Sat, Sun };

int main()

{

 enum week day;

 day = Wed;

 printf("%d", day);

 return 0;

}

©Topperworld

Output

 In the above example, we declared “day” as the variable, and the

value of “Wed” is allocated to day, which is 2. So as a result, 2 is

printed.

Q 28: What is a volatile keyword?

Ans : Volatile keyword is used to prevent the compiler from optimization

because their values can’t be changed by code that is outside the scope of

current code at any time.

The System always reads the current value of a volatile object from the

memory location rather than keeping its value in a temporary register at the

point it is requested, even if previous instruction is asked for the value from

the same object.

Q 29. Write a C program to print the Fibonacci series using

recursion and without using recursion.

Ans :

 #include <stdio.h>

void Fibonacci(int num, int first, int second, int

third)

{

 if (num > 0) {

 third = first + second;

 first = second;

 second = third;

 printf("%d ", third);

2

©Topperworld

Fibonacci(num - 1, first, second, third)

 }

}

int main()

{

int num;

 printf("Please Enter number of Elements: ");

 scanf("%d", &num);

 printf(

 "Fibonacci Series with the help of

Recursion:\n");

printf("%d %d ", 0, 1);

 Fibonacci(num - 2, 0, 1, 0);

 printf("\nFibonacci Series without Using

Recursion:\n");

int first = 0, second = 1, third = 0;

 printf("%d %d ", 0, 1);

 for (int i = 2; i < num; i++) {

 third = first + second;

 printf("%d ", third);

 first = second;

 second = third;

 }

 return 0;

}

©Topperworld

Output:

Q 30. Write a C program to check whether a number is prime or not.

Example:

#include <math.h>

#include <stdio.h>

int main()

{

 int num;

 int check = 1;

 printf("Enter a number: \n");

 scanf("%d", &num);

 for (int i = 2; i <= sqrt(num); i++) {

 if (num % i == 0) {

 check = 0;

 break;

 }

 }

Please Enter number of Elements: 5

Fibonacci Series with the help of Recursion:

0 1 1 2 3

Fibonacci Series without Using Recursion:

0 1 1 2 3

©Topperworld

Q 31. How is source code different from object code?

Ans :

Source Code Object Code

Source code is generated by the

programmer.

object code is generated by a

compiler or another translator.

High-level code which is human-

understandable.

Low-level code is not human-

understandable.

Source code can be easily modified and

contains less number of statements

than object code.

Object code cannot be modified

and contains more statements

than source code.

Source code can be changed over time Object code can be modified and is

if (num <= 1) {

 check = 0;

 }

 if (check == 1) {

 printf("%d is a prime number", num);

 }

 else {

 printf("%d is not a prime number", num);

 }

 return 0;

}

©Topperworld

Source Code Object Code

and is not system specific. system specific.

Source code is less close to the

machine and is input to the compiler or

any other translator.

Source code is more close to the

machine and is the output of the

compiler or any other translator.

Language translators like compilers,

assemblers, and interpreters are used

to translate source code to object code.

Object code is machine code so it

does not require any translation.

Q 32. What is static memory allocation and dynamic memory

allocation?

Ans :

➢ Static memory allocation: Memory allocation which is done at compile

time is known as static memory allocation.

Static memory allocation saves running time. It is faster than dynamic

memory allocation as memory allocation is done from the stack.

This memory allocation method is less efficient as compared to dynamic

memory allocation. It is mostly preferred in the array.

➢ Dynamic memory allocation: Memory allocation done at execution or run

time is known as dynamic memory allocation.

Dynamic memory allocation is slower than static memory allocation as

memory allocation is done from the heap.

This memory allocation method is more efficient as compared to static

memory allocation. It is mostly preferred in the linked list.

©Topperworld

Q 33. What is pass-by-reference in functions?

Ans :

Pass by reference allows a function to modify a variable without making a

copy of the variable.

The Memory location of the passed variable and parameter is the same, so

any changes done to the parameter will be reflected by the variables as well.

Q 34. What is a memory leak and how to avoid it?

Ans : Whenever a variable is defined some amount of memory is created in

the heap. If the programmer forgets to delete the memory.

This undeleted memory in the heap is called a memory leak.

The Performance of the program is reduced since the amount of available

memory was reduced.

To avoid memory leaks, memory allocated on the heap should always be

cleared when it is no longer needed.

Q 35. What are command line arguments?

Ans :

Arguments that are passed to the main() function of the program in the

command-line shell of the operating system are known as command-line

arguments.

Syntax:

int main(int argc, char *argv[]){/*code which

is to be executed*/}

©Topperworld

Q 36. What is an auto keyword?

Ans :

Every local variable of a function is known as an automatic variable in the C

language.

Auto is the default storage class for all the variables which are declared

inside a function or a block.

Auto variables can only be accessed within the block/function they have

been declared. We can use them outside their scope with the help of pointers.

By default auto keywords consist of a garbage value.

Q 37 . Write a program to print “Hello-World” without using a

semicolon.

Ans :

// C program to print hello-world

// without using semicolon

#include <stdio.h>

// Driver code

int main()

{

 if (printf(“Hello - World”)) {

 }

 return 0;

}

©Topperworld

Q 38. Write a C program to swap two numbers without using a

third variable.

Ans :

#include <stdio.h>

int main()

{

 // Variable declaration

 int var1 = 50;

 int var2 = 60;

 printf(

 "Values before swap are var1 = %d and

var2 = %d\n",

 var1, var2);

 var1 = var1 + var2;

 var2 = var1 - var2;

 var1 = var1 - var2;

 printf("Values after swap are var1 = %d and var2

= %d",

 var1, var2);

 return 0;

}

©Topperworld

Output

Q 39. Write a program to check whether a string is a palindrome or

not.

Ans :

 #include <stdio.h>

#include <string.h>

void Palindrome(char s[])

{

 int start = 0;

 int end = strlen(s) - 1;

 while (end > start) {

 if (s[start++] != s[end--]) {

 printf("%s is not a Palindrome \n", s);

 return;

 }

 }

 printf("%s is a Palindrome \n", s);

}

int main()

{

 Palindrome("abba");

 return 0;

}

Values before swap are var1 = 50 and var2 = 60

Values after swap are var1 = 60 and var2 = 50

©Topperworld

Output

Q 40. Explain modifiers.

Ans :

Modifiers are keywords that are used to change the meaning of basic data

types in C language.

They specify the amount of memory that is to be allocated to the variable.

There are five data type modifiers in the C programming language:

⚫ long

⚫ short

⚫ signed

⚫ unsigned

⚫ long long

abba is a Palindrome

©Topperworld

Q 41. Write a program to print the factorial of a given number with

the help of recursion.

Ans :

Output :

#include <stdio.h>

unsigned int factorial(unsigned int n)

{

 if (n == 0)

 return 1;

 return n * factorial(n - 1);

}

int main()

{

 int num = 5;

 printf("Factorial of %d is %d", num,

factorial(num));

return 0;

}

Factorial of 5 is 120

©Topperworld

Q 42. Write a program to check an Armstrong number.

Ans :

#include <stdio.h>

int main()

{

 int n;

 printf("Enter Number \n");

 scanf("%d", &n);

 int var = n;

 int sum = 0;

 while (n > 0) {

 int rem = n % 10;

 sum = (sum) + (rem * rem * rem);

 n = n / 10;

 }

 if (var == sum) {

 printf("%d is an Armstrong number \n", var);

 }

 else {

 printf("%d is not an Armstrong number", var);

 }

 return 0;

}

©Topperworld

Output :

Q 43. Write a program to reverse a given number.

Ans :

#include <stdio.h>

// Driver code

int main()

{

 int n, rev = 0;

 printf("Enter Number to be reversed : ");

 scanf("%d", &n);

 int r = 0;

 while (n != 0)

 {

 r = n % 10;

 rev = rev * 10 + r;

 n /= 10;

 }

 printf("Number After reversing digits is: %d", rev);

 return 0;

}

Enter Number

0 is an Armstrong number

©Topperworld

Output:

Q 44. What is the use of an extern storage specifier?

Ans :

The extern keyword is used to extend the visibility of the C variables and

functions in the C language.

Extern is the short name for external. It is used when a particular file needs

to access a variable from any other file.

Extern keyword increases the redundancy and variables with extern keyword

are only declared not defined.

By default functions are visible throughout the program, so there is no need

to declare or define extern functions.

Q 45. What is the use of printf() and scanf() functions in C

Programming language? Also, explain format specifiers.

Ans :

printf() function is used to print the value which is passed as the parameter

to it on the console screen.

Syntax:

scanf() method, reads the values from the console as per the data type

specified.

Enter Number to be reversed :

Number After reversing digits is: 321

print(“%X”,variable_of_X_type);

©Topperworld

Syntax:

In C format specifiers are used to tell the compiler what type of data will be

present in the variable during input using scanf() or output using print().

• %c: Character format specifier used to display and scan character.

• %d, %i: Signed Integer format specifier used to print or scan an integer

value.

• %f, %e, or %E: Floating-point format specifiers are used for printing or

scanning float values.

• %s: This format specifier is used for String printing.

• %p: This format specifier is used for Address Printing.

Q 46. What is near, far, and huge pointers in C?

Ans :

➢ Near Pointers: Near pointers are used to store 16-bit addresses only.

Using the near pointer, we can not store the address with a size greater

than 16 bits.

➢ Far Pointers: A far pointer is a pointer of 32 bits size. However,

information outside the computer’s memory from the current segment

can also be accessed.

➢ Huge Pointers: Huge pointer is typically considered a pointer of 32 bits

size. But bits located outside or stored outside the segments can also be

accessed.

Q 47. Mention file operations in C.

Ans :

In C programming Basic File Handling Techniques provide the basic

functionalities that programmers can perform against the system.

scanf(“%X”,&variable_of_X_type);

©Topperworld

C file operations refer to the different possible operations that we can

perform on a file in C such as:

1. Creating a new file – fopen() with attributes as “a” or “a+” or

“w” or “w+”

2. Opening an existing file – fopen()

3. Reading from file – fscanf() or fgets()

4. Writing to a file – fprintf() or fputs()

5. Moving to a specific location in a file – fseek(), rewind()

6. Closing a file – fclose()

Q 48. Write a Program to check whether a linked list is circular or

not.

Ans :

#include <stdio.h>

#include <stdlib.h>

struct Node {

 int data;

 struct Node* next;

};

int isCircular(struct Node* head)

{

 // If given linked list is null then it is circular

 if (head == NULL) {

return 1;

 }

 struct Node* ptr;

 ptr = head->next;

©Topperworld

 while (ptr != NULL && ptr != head) {

 ptr = ptr->next;

 }

return (ptr == head);

}

struct Node* newnode(int data)

{

 struct Node* first;

 first = (struct Node*)malloc(sizeof(struct Node));

 first->data = data;

 first->next = NULL;

 return first;

}

int main()

{

 struct Node* head = newnode(10);

 head->next = newnode(12);

 head->next->next = newnode(14);

 head->next->next->next = newnode(16);

 head->next->next->next->next = head;

 if (isCircular(head)) {

 printf("Linked List is Circular\n");

 }

 else {

 printf("Linked List is Not Circular\n");

 }

 return 0;

}

©Topperworld

Q 49 . Write a program to Merge two sorted linked lists.

Ans :

#include <stdio.h>

#include <stdlib.h>

struct Node {

 int data;

 struct Node* next;

};

struct Node* mergeSortedLists(struct Node* a, struct Node* b) {

 struct Node dummy = {0, NULL}, *tail = &dummy;

 while (a && b)

 if (a->data <= b->data) tail = tail->next = a, a = a->next;

 else tail = tail->next = b, b = b->next;

 tail->next = a ? a : b;

 return dummy.next;

}

void printList(struct Node* head) {

 while (head) printf("%d -> ", head->data), head = head->next;

 printf("NULL\n");

}

int main() {

 struct Node *list1, *list2;

 struct Node* mergedList = mergeSortedLists(list1, list2);

 printList(mergedList);

 return 0;

}

©Topperworld

50. What is the difference between getc(), getchar(), getch() and

getche().

Ans :

⚫ getc(): The function reads a single character from an input stream and

returns an integer value (typically the ASCII value of the character) if it

succeeds. On failure, it returns the EOF.

⚫ getchar(): Unlike getc(), gechar() can read from standard input; it is

equivalent to getc(stdin).

⚫ getch(): It is a nonstandard function and is present in ‘conio.h’ header

file which is mostly used by MS-DOS compilers like Turbo C.

⚫ getche(): It reads a single character from the keyboard and displays it

immediately on the output screen without waiting for enter key.

ABOUT US

At TopperWorld, we are on a mission to empower college students with the

knowledge, tools, and resources they need to succeed in their academic

journey and beyond.

➢ Our Vision

❖ Our vision is to create a world where every college student can easily

access high-quality educational content, connect with peers, and achieve

their academic goals.

❖ We believe that education should be accessible, affordable, and engaging,

and that's exactly what we strive to offer through our platform.

©Topperworld

➢ Unleash Your Potential

❖ In an ever-evolving world, the pursuit of knowledge is essential.

TopperWorld serves as your virtual campus, where you can explore a

diverse array of online resources tailored to your specific college

curriculum.

❖ Whether you're studying science, arts, engineering, or any other discipline,

we've got you covered.

❖ Our platform hosts a vast library of e-books, quizzes, and interactive

study tools to ensure you have the best resources at your fingertips.

➢ The TopperWorld Community

❖ Education is not just about textbooks and lectures; it's also about forming

connections and growing together.

❖ TopperWorld encourages you to engage with your fellow students, ask

questions, and share your knowledge.

❖ We believe that collaborative learning is the key to academic success.

➢ Start Your Journey with TopperWorld

❖ Your journey to becoming a top-performing college student begins with

TopperWorld.

❖ Join us today and experience a world of endless learning possibilities.

❖ Together, we'll help you reach your full academic potential and pave the

way for a brighter future.

❖ Join us on this exciting journey, and let's make academic success a reality

for every college student.

DSA Tutorial C Tutorial C++ Tutorial

Java Tutorial Python Tutorial

Explore More

“Unlock Your
Potential”

With- TopperTopperWorldWorld

topperworld.in

Follow Us On E-mail

topperworld.in@gmail.com

